Journal Article

Waves and instabilities in a differentially rotating disc containing a poloidal magnetic field

G.I. Ogilvie

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 297, issue 1, pages 291-314
Published in print June 1998 | ISSN: 0035-8711
Published online June 1998 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1046/j.1365-8711.1998.01507.x
Waves and instabilities in a differentially rotating disc containing a poloidal magnetic field

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

The theory of waves and instabilities in a differentially rotating disc containing a poloidal magnetic field is developed within the framework of ideal magnetohydrodynamics. A continuous spectrum, for which the eigenfunctions are localized on individual magnetic surfaces, is identified but is found not to contain any instabilities associated with differential rotation. The normal modes of a weakly magnetized thin disc are studied by extending the asymptotic methods used previously to describe the equilibria. Waves propagate radially in the disc according to a dispersion relation which is determined by solving an eigenvalue problem at each radius. The dispersion relation for a hydrodynamic disc is re-examined and the modes are classified according to their behaviour in the limit of large wavenumber. The addition of a magnetic field introduces new, potentially unstable, modes and also breaks up the dispersion diagram by causing avoided crossings. The stability boundary to the magnetorotational instability in the parameter space of polytropic equilibria is located by solving directly for marginally stable equilibria. For a given vertical magnetic field in the disc, bending of the field lines has a stabilizing effect and it is shown that stable equilibria exist which are capable of launching a predominantly centrifugally driven wind.

Keywords: accretion; accretion discs; hydrodynamics; instabilities; MHD; waves

Journal Article.  0 words. 

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.