Journal Article

Equivalent width, shape and proper motion of the iron fluorescent line emission from molecular clouds as an indicator of the illuminating source X-ray flux history

R. Sunyaev and E. Churazov

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 297, issue 4, pages 1279-1291
Published in print July 1998 | ISSN: 0035-8711
Published online July 1998 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1046/j.1365-8711.1998.01684.x
Equivalent width, shape and proper motion of the iron fluorescent line emission from molecular clouds as an indicator of the illuminating source X-ray flux history

Show Summary Details

Preview

Observations of the diffuse emission in the 8–22 keV energy range, elongated parallel to the Galactic plane, and detection of the strong 6.4-keV fluorescent line with ∼1 keV equivalent width from some giant molecular clouds (e.g. Sgr B2) in the Galactic Centre region suggest that the neutral matter of these clouds is (or was) illuminated by powerful X-ray radiation, which gave rise to the reprocessed radiation. The source of this radiation remains unknown. A transient source close to the Sgr B2 cloud, or a short outburst of the X-ray emission from a supermassive black hole at the Galactic Centre are the two prime candidates under consideration. We argue that a new generation of X-ray telescopes combining very high sensitivity and excellent energy and angular resolutions would be able to discriminate between these two possibilities when studying time-dependent changes of the morphology of the surface brightness distribution, the equivalent width and the shape of the fluorescent line in Sgr B2 and other molecular clouds in the region. We note also that detection of broad and complex structures near the 6.4-keV line in the spectra of distant AGNs, which are X-ray weak now, may prove the presence of violent activity in the central engines of these objects in the past. Accurate measurements of the line shape may provide information on the time elapsed since the outburst. Proper motion (super- or subluminal) of the fluorescent radiation wave front can give additional information on the location of the source. Observations of the described effects can provide unique information on the matter distribution inside Sgr B2 and other giant molecular clouds.

Keywords: line: formation; ISM: individual: Sgr B; Galaxy: centre; X-rays: general

Journal Article.  0 words. 

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.