Journal Article

Overview of the Epidemiological Profileand Laboratory Detection of Extended-Spectrum β-Lactamases

Michael A. Pfaller and John Segreti

in Clinical Infectious Diseases

Published on behalf of Infectious Diseases Society of America

Volume 42, issue Supplement_4, pages S153-S163
Published in print April 2006 | ISSN: 1058-4838
Published online April 2006 | e-ISSN: 1537-6591 | DOI: http://dx.doi.org/10.1086/500662
Overview of the Epidemiological Profileand Laboratory Detection of Extended-Spectrum β-Lactamases

More Like This

Show all results sharing these subjects:

  • Infectious Diseases
  • Immunology
  • Public Health and Epidemiology
  • Microbiology

GO

Show Summary Details

Preview

Extended-spectrum β-lactamases (ESBLs) are plasmid-mediated bacterial enzymes that confer resistance to a broad range of β-lactams. They are descended by genetic mutation from native β-lactamases found in gram-negative bacteria, especially infectious strains of Escherichia coli and Klebsiella species. Genetic sequence modifications have broadened the substrate specificity of the enzymes to include third-generation cephalosporins, such as ceftazidime. Because ESBL-producing strains are resistant to a wide variety of commonly used antimicrobials, their proliferation poses a serious global health concern that has complicated treatment strategies for a growing number of hospitalized patients. Another resistance mechanism, also common to Enterobacteriaceae, results from the overproduction of chromosomal or plasmid-derived AmpC β-lactamases. These organisms share an antimicrobial resistance pattern similar to that of ESBL-producing organisms, with the prominent exception that, unlike most ESBLs, AmpC enzymes are not inhibited by clavulanate and similar β-lactamase inhibitors. Recent technological improvements in testing and in the development of uniform standards for both ESBL detection and confirmatory testing promise to make accurate identification of ESBL-producing organisms more accessible to clinical laboratories.

Journal Article.  8196 words.  Illustrated.

Subjects: Infectious Diseases ; Immunology ; Public Health and Epidemiology ; Microbiology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.