Journal Article

In Vitro Studies of a Novel Antimicrobial Luer-Activated Needleless Connector for Prevention of Catheter-Related Bloodstream Infection

Dennis G. Maki

in Clinical Infectious Diseases

Published on behalf of Infectious Diseases Society of America

Volume 50, issue 12, pages 1580-1587
Published in print June 2010 | ISSN: 1058-4838
Published online June 2010 | e-ISSN: 1537-6591 | DOI: http://dx.doi.org/10.1086/652764
In Vitro Studies of a Novel Antimicrobial Luer-Activated Needleless Connector for Prevention of Catheter-Related Bloodstream Infection

More Like This

Show all results sharing these subjects:

  • Infectious Diseases
  • Immunology
  • Public Health and Epidemiology
  • Microbiology

GO

Show Summary Details

Preview

Background. We report in vitro studies of a commercially available novel antimicrobial Luer-activated connector with the inner surface coated with nanoparticle-silver to prevent contaminants from forming biofilm and causing catheter-related bloodstream infection.

Methods. Sterile control nonmedicated connectors and antimicrobial connectors were filled with ∼1×105 cfu/mL of Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, Enterobacter cloacae, Pseudomonas aeruginosa, or Candida albicans; after 24 h of incubation, the numbers of remaining viable microorganisms were quantified and compared with the concentration in control connectors (∼1×107 cfu/mL). In trials simulating clinical use, septal membranes of connectors were inoculated with E. cloacae, were allowed to dry, and were then actuated and infused with lactated ringer's solution for 72 h, with sampling for microorganisms in downstream efferent fluid and for biofilm in the connector.

Results. Microorganisms suspended in the intraluminal fluid path of antimicrobial connectors were rapidly killed. For 5 species, there was a 5.23-6.80 mean log10 reduction (>99.999%), and with C. albicans, there was a 99.9% reduction. In clinical simulation trials, heavy contamination of downstream fluid was detected at all time points with control connectors, reaching ∼1×105 cfu/mL at 72 h, and heavy biofilm was uniformly present; with the antimicrobial connectors, there was complete prevention of downstream fluid contamination and total absence of biofilm formation.

Conclusions. These simulation experiments show that needleless connectors readily acquire an internal biofilm when microorganisms gain access to the internal fluid path and that biofilm formation allows an exponential buildup of internal contamination, with shedding back into the fluid path and downstream sufficient to cause bacteremia. Incorporation of nanoparticle silver into the lining surfaces of the novel connector kills microorganisms in the fluid pathway and prevents internal biofilm formation, even with high levels of introduced contamination and continuous fluid flow. This technology deserves to be evaluated in a prospective, randomized clinical trial to determine its capacity to prevent catheter-associated bloodstream infection.

Journal Article.  4359 words.  Illustrated.

Subjects: Infectious Diseases ; Immunology ; Public Health and Epidemiology ; Microbiology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.