Journal Article

Microbial Etiologies of Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia

Ronald N. Jones

in Clinical Infectious Diseases

Published on behalf of Infectious Diseases Society of America

Volume 51, issue Supplement_1, pages S81-S87
Published in print August 2010 | ISSN: 1058-4838
Published online August 2010 | e-ISSN: 1537-6591 | DOI: http://dx.doi.org/10.1086/653053
Microbial Etiologies of Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia

More Like This

Show all results sharing these subjects:

  • Infectious Diseases
  • Immunology
  • Public Health and Epidemiology
  • Microbiology

GO

Show Summary Details

Preview

Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) can be caused by a wide variety of bacteria that originate from the patient flora or the health care environment. We review the medical and microbiology literature and the results of the SENTRY Antimicrobial Surveillance Program (1997-2008) to establish the pathogens most likely to cause HABP or VABP. In all studies, a consistent 6 organisms (Staphylococcus aureus [28.0%], Pseudomonas aeruginosa [21.8%], Klebsiella species [9.8%], Escherichia coli [6.9%], Acinetobacter species [6.8%], and Enterobacter species [6.3%]) caused ∼80% of episodes, with lower prevalences of Serratia species, Stenotrophomonas maltophilia, and community-acquired pathogens, such as pneumococci and Haemophilus influenzae. Slight changes in the pathogen order were noted among geographic regions; Latin America had an increased incidence of nonfermentative gram-negative bacilli. In addition, VABP isolates of the same species had a mean of 5%-10% less susceptibility to frequently used extended-spectrum antimicrobials, and the rate of drug resistance among HABP and VABP pathogens has been increasing by 1% per year (2004-2008). In conclusion, the empirical treatment of HABP and VABP due to prevailing bacterial causes and emerging drug resistance has become more challenging and requires use of multidrug empirical treatment regimens for routine clinical practice. These facts have profound impact on the choices of comparison therapies to be applied in contemporary new drug clinical trials for pneumonia.

Journal Article.  3614 words.  Illustrated.

Subjects: Infectious Diseases ; Immunology ; Public Health and Epidemiology ; Microbiology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.