Chapter

Random systems

Hidetoshi Nishimori and Gerardo Ortiz

in Elements of Phase Transitions and Critical Phenomena

Published in print December 2010 | ISBN: 9780199577224
Published online January 2011 | e-ISBN: 9780191722943 | DOI: http://dx.doi.org/10.1093/acprof:oso/9780199577224.003.0008

Series: Oxford Graduate Texts

Random systems

More Like This

Show all results sharing this subject:

  • Mathematical and Statistical Physics

GO

Show Summary Details

Preview

Real materials always contain randomness or disorder that cannot be expressed by idealized simple model systems. The present chapter studies the effects of randomness on phase transitions and critical phenomena. Although randomness may seem to obscure singular behaviour such as divergence of physical quantities at the critical temperature, it is established that well-defined phase transitions exist as long as randomness is not too strong, but the critical behaviour may get modified with respect to the pure sample. After the introduction of basic concepts and methods such as self-averaging and replica method, it is elucidated what type of phase transitions exist in the random-field Ising model and the SK model of spin glasses. Also explained are the percolation transitions using the fractal structure and the Potts model.

Keywords: randomness; disorder; self-averaging; spin glass; SK model; replica method; percolation; fractal structure; Potts model

Chapter.  12927 words.  Illustrated.

Subjects: Mathematical and Statistical Physics

Full text: subscription required

How to subscribe Recommend to my Librarian

Buy this work at Oxford University Press »

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.