Journal Article

How Many Genes are Needed to Make a Pollen Tube? Lessons from Transcriptomics

Jörg D. Becker and José A. Feijó

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 100, issue 6, pages 1117-1123
Published in print November 2007 | ISSN: 0305-7364
Published online November 2007 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcm208
How Many Genes are Needed to Make a Pollen Tube? Lessons from Transcriptomics

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background

Pollen is the male gametophyte of higher plants. Upon pollination, it germinates and develops into a fast-growing cytoplasmic extension, the pollen tube, which ultimately delivers the sperm into the ovary. The biological relevance of its role, and the uniqueness of this kind of cellular organization, have made pollen the focus of many approaches, and it stands today as one of the best-known models in plant cell biology. In contrast, the genetic background of its development has been until recently largely unknown. Some genes involved have been described and a few functional mutants have been characterized, but only to a limited extent and allowing only a limited understanding of the regulatory mechanisms. Yet, being a relatively simple organ (2 or 3 cells), pollen stands as an excellent target for molecular-biology-based approaches.

Recent Progress

Recent studies on Arabidopsis thaliana have characterized the transcriptional profile of pollen grains and microgametogenesis in comparison to sporophytic tissues. They underline the unique characteristics of pollen, not only in terms of a strongly reduced set of genes being expressed, but also in terms of the functions of the proteins encoded and the pathways they are involved in. These approaches have expanded the number of genes with known expression in pollen from a few hundred to nearly eight thousand. While for the first time allowing systems and/or gene-family approaches, this information also expands dramatically the possibility of hypothesis-driven experimentation based on specific gene function predictions. Recent studies reveal this to be the case in, for example, transcriptional regulation, cell-cycle progression and gene-silencing mechanisms in mature pollen.

Keywords: Pollen; transcriptome; proteome; microarray; Arabidopsis

Journal Article.  3986 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.