Journal Article

Morphological and Physiological Responses to Sediment Type and Light Availability in Roots of the Submerged Plant <i>Myriophyllum spicatum</i>

Yonghong Xie, Wenbo Luo, Bo Ren and Feng Li

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 100, issue 7, pages 1517-1523
Published in print December 2007 | ISSN: 0305-7364
Published online October 2007 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcm236
Morphological and Physiological Responses to Sediment Type and Light Availability in Roots of the Submerged Plant Myriophyllum spicatum

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Both sediment and light are essential factors regulating the growth of submerged macrophytes, but the role of these two factors in regulating root morphology and physiology is far from clear. The responses of root morphology and physiology to sediment type and light availability in the submerged plant Myriophyllum spicatum were studied and the hypothesis was tested that a trade-off exists in root growth strategy between internal aeration and nutrient acquisition.

Methods

Plants were grown on two types of sediment (fertile mud and an infertile mixture of mud and sandy loam) and under three levels of light availability (600, 80 and 20 µ mol m−2 s−1) in a greenhouse.

Key Results

The significantly higher alcohol dehydrogenase (ADH) activity in root tissues indicated that oxygen deficiency existed in the plants growing in fertile mud and low (or high) light environments. Significantly, low plant N and P concentrations indicated that nutrient deficiency existed in the mixed sediment and high light environment. As a response to anoxia, plants did not change the porosity of the main roots. The effect of sediment type on root morphology was insignificant under higher light environments, whereas root diameter generally decreased but specific root length (SRL) increased with decreasing light availability. Both low light and fertile mud jointly led to lack of second-order laterals. More biomass was allocated to lateral roots in infertile environments, whereas mass fractions of laterals were lower in low light and mud environments.

Conclusions

These data indicate that this plant can achieve the trade-off between internal aeration and nutrient acquisition by adjusting the structure of the root system and the pattern of biomass allocation to different root orders rather than root morphology and root porosity.

Keywords: Adaptation; aeration; anoxia; biomass allocation; nutrient; morphological plasticity; oxygen; root system; submerged macrophytes; Myriophyllum spicatum

Journal Article.  4637 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.