Journal Article

Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding

T. Pfannschmidt, K. Bräutigam, R. Wagner, L. Dietzel, Y. Schröter, S. Steiner and A. Nykytenko

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 103, issue 4, pages 599-607
Published in print February 2009 | ISSN: 0305-7364
Published online May 2008 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcn081
Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background

Photosynthetic electron transport is performed by a chain of redox components that are electrochemically connected in series. Its efficiency depends on the balanced action of the photosystems and on the interaction with the dark reaction. Plants are sessile and cannot escape from environmental conditions such as fluctuating illumination, limitation of CO2 fixation by low temperatures, salinity, or low nutrient or water availability, which disturb the homeostasis of the photosynthetic process. Photosynthetic organisms, therefore, have developed various molecular acclimation mechanisms that maintain or restore photosynthetic efficiency under adverse conditions and counteract abiotic stresses. Recent studies indicate that redox signals from photosynthetic electron transport and reactive oxygen species (ROS) or ROS-scavenging molecules play a central role in the regulation of acclimation and stress responses.

Scope

The underlying signalling network of photosynthetic redox control is largely unknown, but it is already apparent that gene regulation by redox signals is of major importance for plants. Signalling cascades controlling the expression of chloroplast and nuclear genes have been identified and dissection of the different pathways is advancing. Because of the direction of information flow, photosynthetic redox signals can be defined as a distinct class of retrograde signals in addition to signals from organellar gene expression or pigment biosynthesis. They represent a vital signal of mature chloroplasts that report their present functional state to the nucleus. Here we describe possible problems in the elucidation of redox signalling networks and discuss some aspects of plant cell biology that are important for developing suitable experimental approaches.

Conclusions

The photosynthetic function of chloroplasts represents an important sensor that integrates various abiotic changes in the environment into corresponding molecular signals, which, in turn, regulate cellular activities to counterbalance the environmental changes or stresses.

Keywords: Photosynthesis; redox signals; gene expression; regulatory network; retrograde signalling; cross-talk; plastids; higher plants

Journal Article.  7012 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.