Journal Article

Morphological and physiological responses of rice seedlings to complete submergence (flash flooding)

Naoyoshi Kawano, Osamu Ito and Jun-Ichi Sakagami

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 103, issue 2, pages 161-169
Published in print January 2009 | ISSN: 0305-7364
Published online October 2008 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcn171
Morphological and physiological responses of rice seedlings to complete submergence (flash flooding)

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Reducing damage to rice seedlings caused by flash flooding will improve the productivity of rainfed lowland rice in West Africa. Accordingly, the morphological and physiological responses of different forms of rice to complete submergence were examined in field and pot experiments to identify primary causes of damage.

Methods

To characterize the physiological responses, seedlings from a wide genetic base including Oryza sativa, O. glaberrima and interspecific hybrids were compared using principle component analysis.

Key Results

Important factors linked to flash-flood tolerance included minimal shoot elongation underwater, increase in dry matter weight during submergence and post-submergence resistance to lodging. In particular, fast shoot elongation during submergence negatively affected plant growth after de-submergence. Also shoot-elongating cultivars showed a strong negative correlation between dry matter weight of the leaves that developed before submergence and leaves developing during submergence.

Conclusions

Enhancement of shoot elongation during submergence in water that is too deep to permit re-emergence by small seedlings represents a futile escape strategy that takes place at the expense of existing dry matter in circumstances where underwater photosynthetic carbon fixation is negligible. Consequently, it compromises survival or recovery growth once flood water levels recede and plants are re-exposed to the aerial environment. Tolerance is greater in cultivars where acceleration of elongation caused by submergence is minimal.

Keywords: Africa; flash floods; Oryza glaberrima; rainfed lowland; rice; shoot elongation; stress tolerance; submergence

Journal Article.  5457 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.