Journal Article

Differential expression of miRNAs in response to salt stress in maize roots

Dong Ding, Lifang Zhang, Hang Wang, Zhijie Liu, Zuxin Zhang and Yonglian Zheng

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 103, issue 1, pages 29-38
Published in print January 2009 | ISSN: 0305-7364
Published online October 2008 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcn205
Differential expression of miRNAs in response to salt stress in maize roots

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Corn (Zea mays) responds to salt stress via changes in gene expression, metabolism and physiology. This adaptation is achieved through the regulation of gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) have been found to act as key regulating factors of post-transcriptional gene expression. However, little is known about the role of miRNAs in plants' responses to abiotic stresses.

Methods

A custom μparaflo™ microfluidic array containing release version 10.1 plant miRNA probes (http://microrna.sanger.ac.uk/) was used to discover salt stress-responsive miRNAs using the differences in miRNA expression between the salt-tolerant maize inbred line ‘NC286’ and the salt-sensitive maize line ‘Huangzao4’.

Key Results

miRNA microarray hybridization revealed that a total of 98 miRNAs, from 27 plant miRNA families, had significantly altered expression after salt treatment. These miRNAs displayed different activities in the salt response, and miRNAs belonging to the same miRNA family showed the same behaviour. Interestingly, 18 miRNAs were found which were only expressed in the salt-tolerant maize line, and 25 miRNAs that showed a delayed regulation pattern in the salt-sensitive line. A gene model was proposed that showed how miRNAs could regulate the abiotic stress-associated process and the gene networks coping with the stress.

Conclusions

Salt-responsive miRNAs are involved in the regulation of metabolic, morphological and physiological adaptations of maize seedlings at the post-transcriptional level. The miRNA genotype-specific expression model might explain the distinct salt sensitivities between maize lines.

Keywords: Salt stress; Zea mays; microRNA; microarray; transcription regulation; Zea mays

Journal Article.  5765 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.