Journal Article

Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance

Hélène Gautier, Capucine Massot, Rebecca Stevens, Sylvie Sérino and Michel Génard

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 103, issue 3, pages 495-504
Published in print February 2009 | ISSN: 0305-7364
Published online November 2008 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcn233
Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content.

Methods

Cherry tomato plants were grown in a glasshouse. The control treatment (normally irradiated fruits and irradiated leaves) was compared with the whole-plant shading treatment and with leaf or fruit shading treatments in fruits harvested at breaker stage. In a second experiment, the correlation between sugars and AsA was studied during ripening.

Key Results

Fruit shading was the most effective treatment in reducing fruit AsA content. Under normal conditions, AsA and sugar content were correlated and increased with the ripening stage. Reducing fruit irradiance strongly decreased the reduced AsA content (−74 %), without affecting sugars, so that sugar and reduced AsA were no longer correlated. Leaf shading delayed fruit ripening: it increased the accumulation of oxidized AsA in green fruits (+98 %), whereas it decreased the reduced AsA content in orange fruits (−19 %), suggesting that fruit AsA metabolism also depends on leaf irradiance.

Conclusions

Under fruit shading only, the absence of a correlation between sugars and reduced AsA content indicated that fruit AsA content was not limited by leaf photosynthesis or sugar substrate, but strongly depended on fruit irradiance. Leaf shading most probably affected fruit AsA content by delaying fruit ripening, and suggested a complex regulation of AsA metabolism which depends on both fruit and leaf irradiance and fruit ripening stage.

Keywords: Ascorbate; fruit quality; irradiance; shading; Solanum lycopersicon; sugars; tomato; vitamin C

Journal Article.  6449 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.