Journal Article

Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content

Juan M. Posada, Martin J. Lechowicz and Kaoru Kitajima

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 103, issue 5, pages 795-805
Published in print March 2009 | ISSN: 0305-7364
Published online January 2009 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcn265
Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Theory for optimal allocation of foliar nitrogen (ONA) predicts that both nitrogen concentration and photosynthetic capacity will scale linearly with gradients of insolation within plant canopies. ONA is expected to allow plants to efficiently use both light and nitrogen. However, empirical data generally do not exhibit perfect ONA, and light-use optimization per se is little explored. The aim was to examine to what degree partitioning of nitrogen or light is optimized in the crowns of three tropical canopy tree species.

Methods

Instantaneous photosynthetic photon flux density (PPFD) incident on the adaxial surface of individual leaves was measured along vertical PPFD gradients in tree canopies at a frequency of 0·5 Hz over 9–17 d, and summed to obtain the average daily integral of PPFD for each leaf to characterize its insolation regime. Also measured were leaf N per area (Narea), leaf mass per area (LMA), the cosine of leaf inclination and the parameters of the photosynthetic light response curve [photosynthetic capacity (Amax), dark respiration (Rd), apparent quantum yield (ϕ) and curvature (θ)]. The instantaneous PPFD measurements and light response curves were used to estimate leaf daily photosynthesis (Adaily) for each leaf.

Key Results

Leaf Narea and Amax changed as a hyperbolic asymptotic function of the PPFD regime, not the linear relationship predicted by ONA. Despite this suboptimal nitrogen partitioning among leaves, Adaily did increase linearly with PPFD regime through co-ordinated adjustments in both leaf angle and physiology along canopy gradients in insolation, exhibiting a strong convergence among the three species.

Conclusions

The results suggest that canopy tree leaves in this tropical forest optimize photosynthetic use of PPFD rather than N per se. Tropical tree canopies then can be considered simple ‘big-leaves’ in which all constituent ‘small leaves’ use PPFD with the same photosynthetic efficiency.

Keywords: Optimal resource allocation; nitrogen; photosynthetic capacity; leaf mass per area; tropical trees; radiation use efficiency; scaling; leaf angle; canopy architecture; big leaf model

Journal Article.  7969 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.