Journal Article

Using a model-based framework for analysing genetic diversity during germination and heterotrophic growth of <i>Medicago truncatula</i>

S. Brunel, B. Teulat-Merah, M.-H. Wagner, T. Huguet, J. M. Prosperi and C. Dürr

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 103, issue 7, pages 1103-1117
Published in print May 2009 | ISSN: 0305-7364
Published online February 2009 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcp040
Using a model-based framework for analysing genetic diversity during germination and heterotrophic growth of Medicago truncatula

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

The framework provided by an emergence model was used: (1) for phenotyping germination and heterotrophic growth of Medicago truncatula in relation to two major environmental factors, temperature and water potential; and (2) to evaluate the extent of genetic differences in emergence-model parameters.

Methods

Eight cultivars and natural accessions of M. trunculata were studied. Germination was recorded from 5 to 30 °C and from 0 to −0·75 MPa, and seedling growth from 10 to 20 °C.

Key Results

Thermal time to reach 50 % germination was very short (15 °Cd) and almost stable between genotypes, while base temperature (2–3 °C) and base water potential for germination (−0·7 to −1·3 MPa) varied between genotypes. Only 35 °Cd after germination were required to reach 30 mm hypocotyl length with significant differences among genotypes. Base temperature for elongation varied from 5·5 to 7·5 °C. Low temperatures induced a general shortening of the seedling, with some genotypes more responsive than others. No relationship with initial seed mass or seed reserve distribution was observed, which might have explained differences between genotypes and the effects of low temperatures.

Conclusions

The study provides a set of reference values for M. trunculata users. The use of the ecophysiological model allows comparison of these values between such non-crop species and other crops. It has enabled phenotypic variability in response to environmental conditions related to the emergence process to be identified. The model will allow simulation of emergence differences between genotypes in a range of environments using these parameter values. Genomic tools available for the model species M. trunculata will make it possible to analyse the genetic and molecular determinants of these differences.

Keywords: Core collection; emergence; Medicago truncatula; modelling; seed; temperature; water potential

Journal Article.  9688 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.