Journal Article

The adaptive accuracy of flowers: measurement and microevolutionary patterns

W. Scott Armbruster, Thomas F. Hansen, Christophe Pélabon, Rocío Pérez-Barrales and Johanne Maad

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 103, issue 9, pages 1529-1545
Published in print June 2009 | ISSN: 0305-7364
Published online May 2009 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcp095
The adaptive accuracy of flowers: measurement and microevolutionary patterns

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

From Darwin's time onward, biologists have thought about adaptation as evolution toward optimal trait values, but they have not usually assessed the relative importance of the distinct causes of deviations from optima. This problem is investigated here by measuring adaptive inaccuracy (phenotypic deviation from the optimum), using flower pollination as an adaptive system.

Methods

Adaptive accuracy is shown to have at least three distinct components, two of which are optimality (deviation of the mean from the optimum) and precision (trait variance). We then describe adaptive accuracy of both individuals and populations. Individual inaccuracy comprises the deviation of the genotypic target (the mean phenotype of a genotype grown in a range of environments) from the optimum and the phenotypic variation around that genotypic target (phenotypic imprecision). Population inaccuracy has three basic components: deviation of the population mean from the optimum, variance in the genotypic targets and phenotypic imprecision. In addition, a fourth component is proposed, namely within-population variation in the optimum. These components are directly estimable, have additive relationships, and allow exploration of the causes of adaptive inaccuracy of both individuals and populations. Adaptive accuracy of a sample of flowers is estimated, relating floral phenotypes controlling pollen deposition on pollinators to adaptive optima defined as the site most likely to get pollen onto stigmas (male inaccuracy). Female inaccuracy is defined as the deviation of the position of stigma contact from the expected location of pollen on pollinators.

Key Results

A surprising amount of variation in estimated accuracy within and among similar species is found. Some of this variation is generated by developmental changes in positions of stigmas or anthers during anthesis (the floral receptive period), which can cause dramatic change in accuracy estimates. There seem to be trends for higher precision and accuracy in flowers with higher levels of integration and dichogamy (temporal separation of sexual functions), and in those that have pollinators that are immobile (or immobilized) during pollen transfer. Large deviations from putative adaptive optima were observed, and these may be related to the effects of conflicting selective pressures on flowers, such as selection against self-pollination promoting herkogamy (spatial separation of pollen and stigmas).

Conclusions

Adaptive accuracy is a useful concept for understanding the adaptive significance of phenotypic means and variances of floral morphology within and among populations and species. Estimating and comparing the various components of adaptive accuracy can be particularly helpful for identifying the causes of inaccuracy, such as conflicting selective pressures, low environmental canalization and developmental instability.

Keywords: Adaptive accuracy; Collinsia; Dalechampia; fitness; floral precision; Linum; optimality; pollination; Stylidium

Journal Article.  11495 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.