Journal Article

Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to <i>Artemisia annua</i>

Michael J. Davies, Christopher J. Atkinson, Corrinne Burns, Jack G. Woolley, Neil A. Hipps, Randolph R. J. Arroo, Nigel Dungey, Trevor Robinson, Paul Brown, Ian Flockart, Colin Hill, Lydia Smith and Steven Bentley

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 104, issue 2, pages 315-323
Published in print August 2009 | ISSN: 0305-7364
Published online May 2009 | e-ISSN: 1095-8290 | DOI: https://dx.doi.org/10.1093/aob/mcp126
Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

The resurgence of malaria, particularly in the developing world, is considerable and exacerbated by the development of single-gene multi-drug resistances to chemicals such as chloroquinone. Drug therapies, as recommended by the World Health Organization, now include the use of antimalarial compounds derived from Artemisia annua – in particular, the use of artemisinin-based ingredients. Despite our limited knowledge of its mode of action or biosynthesis there is a need to secure a supply and enhance yields of artemisinin. The present study aims to determine how plant biomass can be enhanced while maximizing artemisinin concentration by understanding the plant's nutritional requirements for nitrogen and potassium.

Methods

Experiments were carried out, the first with differing concentrations of nitrogen, at 6, 31, 56, 106, 206 or 306 mg L−1 being applied, while the other differing in potassium concentration (51, 153 or 301 mg L−1). Nutrients were supplied in irrigation water to plants in pots and after a growth period biomass production and leaf artemisinin concentration were measured. These data were used to determine optimal nutrient requirements for artemisinin yield.

Key Results

Nitrogen nutrition enhanced plant nitrogen concentration and biomass production successively up to 106 mg N L−1 for biomass and 206 mg N L−1 for leaf nitrogen; further increases in nitrogen had no influence. Artemisinin concentration in dried leaf material, measured by HPLC mass spectroscopy, was maximal at a nitrogen application of 106 mg L−1, but declined at higher concentrations. Increasing potassium application from 51 to 153 mg L−1 increased total plant biomass, but not at higher applications. Potassium application enhanced leaf potassium concentration, but there was no effect on leaf artemisinin concentration or leaf artemisinin yield.

Conclusions

Artemisinin concentration declined beyond an optimal point with increasing plant nitrogen concentration. Maximization of artemisinin yield (amount per plant) requires optimization of plant biomass via control of nitrogen nutrition.

Keywords: Artemisia; fertigation; malaria; nitrogen; nutrition; potassium

Journal Article.  5515 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.