Journal Article

Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review

Hendrikus J. Laanbroek

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 105, issue 1, pages 141-153
Published in print January 2010 | ISSN: 0305-7364
Published online August 2009 | e-ISSN: 1095-8290 | DOI:
Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry


Show Summary Details



According to the Intergovernmental Panel on Climate Change (IPCC) 2007, natural wetlands contribute 20–39 % to the global emission of methane. The range in the estimated percentage of the contribution of these systems to the total release of this greenhouse gas is large due to differences in the nature of the emitting vegetation including the soil microbiota that interfere with the production and consumption of methane.


Methane is a dominant end-product of anaerobic mineralization processes. When all electron acceptors except carbon dioxide are used by the microbial community, methanogenesis is the ultimate pathway to mineralize organic carbon compounds. Emergent wetland plants play an important role in the emission of methane to the atmosphere. They produce the carbon necessary for the production of methane, but also facilitate the release of methane by the possession of a system of interconnected internal gas lacunas. Aquatic macrophytes are commonly adapted to oxygen-limited conditions as they prevail in flooded or waterlogged soils. By this system, oxygen is transported to the underground parts of the plants. Part of the oxygen transported downwards is released in the root zone, where it sustains a number of beneficial oxidation processes. Through the pores from which oxygen escapes from the plant into the root zone, methane can enter the plant aerenchyma system and subsequently be emitted into the atmosphere. Part of the oxygen released into the root zone can be used to oxidize methane before it enters the atmosphere. However, the oxygen can also be used to regenerate alternative electron acceptors. The continuous supply of alternative electron acceptors will diminish the role of methanogenesis in the anaerobic mineralization processes in the root zone and therefore repress the production and emission of methane. The role of alternative element cycles in the inhibition of methanogenesis is discussed.


The role of the nitrogen cycle in repression of methane production is probably low. In contrast to wetlands particularly created for the purification of nitrogen-rich waste waters, concentrations of inorganic nitrogen compounds are low in the root zones in the growing season due to the nitrogen-consuming behaviour of the plant. Therefore, nitrate hardly competes with other electron acceptors for reduced organic compounds, and repression of methane oxidation by the presence of higher levels of ammonium will not be the case. The role of the iron cycle is likely to be important with respect to the repression of methane production and oxidation. Iron-reducing and iron-oxidizing bacteria are ubiquitous in the rhizosphere of wetland plants. The cycling of iron will be largely dependent on the size of the oxygen release in the root zone, which is likely to be different between different wetland plant species. The role of the sulfur cycle in repression of methane production is important in marine, sulfate-rich ecosystems, but might also play a role in freshwater systems where sufficient sulfate is available. Sulfate-reducing bacteria are omnipresent in freshwater ecosystems, but do not always react immediately to the supply of fresh sulfate. Hence, their role in the repression of methanogenesis is still to be proven in freshwater marshes.

Keywords: Methane emission; methane oxidation; wetlands; emergent macrophytes; nitrogen cycling; sulfur cycling; iron cycling

Journal Article.  9529 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.