Journal Article

Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species

Fang-Li Luo, Kerstin A. Nagel, Bo Zeng, Ulrich Schurr and Shizue Matsubara

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 104, issue 7, pages 1435-1444
Published in print December 2009 | ISSN: 0305-7364
Published online October 2009 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcp257
Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Concomitant increases in O2 and irradiance upon de-submergence can cause photoinhibition and photo-oxidative damage to the photosynthetic apparatus of plants. As energy and carbohydrate supply from photosynthesis is needed for growth, it was hypothesized that post-submergence growth recovery may require efficient photosynthetic acclimation to increased O2 and irradiance to minimize photo-oxidative damage. The hypothesis was tested in two flood-tolerant species: a C3 herb, Alternanthera philoxeroides; and a C4 grass, Hemarthria altissima. The impact of low O2 and low light, typical conditions in turbid floodwater, on post-submergence recovery was assessed by different flooding treatments combined with shading.

Methods

Experiments were conducted during 30 d of flooding (waterlogging or submergence) with or without shading and subsequent recovery of 20 d under growth conditions. Changes in dry mass, number of branches/tillers, and length of the longest internodes and main stems were recorded to characterize growth responses. Photosynthetic parameters (photosystem II efficiency and non-photochemical quenching) were determined in mature leaves based on chlorophyll a fluorescence measurements.

Key Results

In both species growth and photosynthesis recovered after the end of the submergence treatment, with recovery of photosynthesis (starting shortly after de-submergence) preceding recovery of growth (pronounced on days 40–50). The effective quantum yield of photosystem II and non-photochemical quenching were diminished during submergence but rapidly increased upon de-submergence. Similar changes were found in all shaded plants, with or without flooding. Submerged plants did not suffer from photoinhibition throughout the recovery period although their growth recovery was retarded.

Conclusions

After sudden de-submergence the C3 plant A. philoxeroides and the C4 plant H. altissima were both able to maintain the functionality of the photosynthetic apparatus through rapid acclimation to changing O2 and light conditions. The ability for photosynthetic acclimation may be essential for adaptation to wetland habitats in which water levels fluctuate.

Keywords: Aerenchyma; Alternanthera philoxeroides; flooding; growth; Hemarthria altissima; low light; photosynthesis; shade; submergence; waterlogging; wetland plant

Journal Article.  5936 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.