Journal Article

Trap closure and prey retention in Venus flytrap (<i>Dionaea muscipula</i>) temporarily reduces photosynthesis and stimulates respiration

Andrej Pavlovič, Viktor Demko and Ján Hudák

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 105, issue 1, pages 37-44
Published in print January 2010 | ISSN: 0305-7364
Published online November 2009 | e-ISSN: 1095-8290 | DOI:
Trap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry


Show Summary Details


Background and Aims

The carnivorous plant Venus flytrap (Dionaea muscipula) produces a rosette of leaves: each leaf is divided into a lower part called the lamina and an upper part, the trap, with sensory trigger hairs on the adaxial surface. The trap catches prey by very rapid closure, within a fraction of a second of the trigger hairs being touched twice. Generation of action potentials plays an important role in closure. Because electrical signals are involved in reduction of the photosynthetic rate in different plant species, we hypothesized that trap closure and subsequent movement of prey in the trap will result in transient downregulation of photosynthesis, thus representing the energetic costs of carnivory associated with an active trapping mechanism, which has not been previously described.


Traps were enclosed in a gas exchange cuvette and the trigger hairs irritated with thin wire, thus simulating insect capture and retention. Respiration rate was measured in darkness (RD). In the light, net photosynthetic rate (AN), stomatal conductance (gs) and intercellular CO2 concentration (ci) were measured, combined with chlorophyll fluorescence imaging. Responses were monitored in the lamina and trap separately.

Key Results

Irritation of trigger hairs resulted in decreased AN and increased RD, not only immediately after trap closure but also during the subsequent period when prey retention was simulated in the closed trap. Stomatal conductance remained stable, indicating no stomatal limitation of AN, so ci increased. At the same time, the effective quantum yield of photosystem II (ΦPSII) decreased transiently. The response was confined mainly to the digestive zone of the trap and was not observed in the lamina. Stopping mechanical irritation resulted in recovery of AN, RD and ΦPSII.


We put forward the first experimental evidence for energetic demands and carbon costs during insect trapping and retention in carnivorous plants, providing a new insight into the cost/benefit model of carnivory.

Keywords: Action potential; carnivorous plant; cost/benefit model; chlorophyll fluorescence imaging; Dionaea muscipula; photosynthetic rate; respiration rate; Venus flytrap

Journal Article.  4979 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.