Journal Article

Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement

Merav Chatzav, Zvi Peleg, Levent Ozturk, Atilla Yazici, Tzion Fahima, Ismail Cakmak and Yehoshua Saranga

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 105, issue 7, pages 1211-1220
Published in print June 2010 | ISSN: 0305-7364
Published online March 2010 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcq024
Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions.

Methods

A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations.

Key Results

Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils.

Conclusions

Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool.

Keywords: grain quality; iron; macronutrient; micronutrient; protein; Triticum turgidum ssp. dicoccoides; wheat improvement; zinc

Journal Article.  6024 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.