Journal Article

Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of <i>Trifolium ambiguum</i>

F. R. Hay, R. D. Smith, R. H. Ellis and L. H. Butler

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 105, issue 6, pages 1035-1052
Published in print June 2010 | ISSN: 0305-7364
Published online March 2010 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcq037
Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds.

Methods

Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits.

Key Results

Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period.

Conclusions

Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors.

Keywords: Seed development; seed-to-seed variation; seed longevity; seed coat colour; cohort and population measurements; model system; Trifolium ambiguum

Journal Article.  12337 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.