Journal Article

High clonal diversity in threatened peripheral populations of the yellow bird's nest (<i>Hypopitys monotropa</i>; syn. <i>Monotropa hypopitys</i>)

Gemma E. Beatty and Jim Provan

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 107, issue 4, pages 663-670
Published in print April 2011 | ISSN: 0305-7364
Published online January 2011 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcr003
High clonal diversity in threatened peripheral populations of the yellow bird's nest (Hypopitys monotropa; syn. Monotropa hypopitys)

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Peripheral populations of plant species are often characterized by low levels of genetic diversity as a result of genetic drift, restricted gene flow, inbreeding and asexual reproduction. These effects can be exacerbated where range-edge populations are fragmented. The main aim of the present study was to assess the levels of genetic diversity in remnant populations of Hypopitys monotropa (syn. Monotropa hypopitys; yellow bird's nest) at the edge of the species' European range in Northern Ireland, since these remnant populations are small and highly fragmented.

Methods

Every plant found through surveys of 21 extant populations was genotyped for eight microsatellite loci to estimate levels and patterns of genetic diversity and clonality.

Key Results

Levels of genetic diversity were relatively high in the populations studied, and the incidence of clonal reproduction was generally low, with a mean of only 14·45 % of clonal individuals. Clones were small and highly spatially structured. Levels of inbreeding, however, were high.

Conclusions

The observed low levels of clonality suggest that the majority of genets in the populations of H. monotropa studied are fertile and that reproduction is predominantly sexual. As the species is highly self-compatible, it is likely that the high levels of inbreeding observed in the populations in the present study are the result of self-pollination, particularly given the small numbers of individuals in most of the patches. Given this extent of inbreeding, further genetic monitoring would be advisable to ensure that genetic diversity is maintained.

Keywords: Clonality; conservation; distribution range; fragmentation; inbreeding; Hypopitys monotropa; Monotropoideae; Pyrolaceae

Journal Article.  4655 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.