Journal Article

Common allometric response of open-grown leader shoots to tree height in co-occurring deciduous broadleaved trees

Rie Miyata, Takuya Kubo, Eri Nabeshima and Takashi S. Kohyama

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 108, issue 7, pages 1279-1286
Published in print November 2011 | ISSN: 0305-7364
Published online September 2011 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcr228
Common allometric response of open-grown leader shoots to tree height in co-occurring deciduous broadleaved trees

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns.

Methods

Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan.

Key Results

Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height.

Conclusions

In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain.

Keywords: Allometry; current-year leader shoot; hierarchical Bayesian model; pipe model; tree height; water stress

Journal Article.  5785 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.