Journal Article

Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

Chengchen Li, Shunhua Gui, Tao Yang, Thomas Walk, Xiurong Wang and Hong Liao

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 109, issue 1, pages 275-285
Published in print January 2012 | ISSN: 0305-7364
Published online September 2011 | e-ISSN: 1095-8290 | DOI: https://dx.doi.org/10.1093/aob/mcr246
Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparative studies on structure, transcription regulation and responses to phosphate (Pi) deprivation of the soybean PAP gene family should facilitate further insights into the potential physiological roles of GmPAPs.

Methods

BLAST searches were performed to identify soybean PAP genes at the phytozome website. Bioinformatic analyses were carried out to investigate their gene structure, conserve motifs and phylogenetic relationships. Hydroponics and sand-culture experiments were carried out to obtain the plant materials. Quantitative real-time PCR was employed to analyse the expression patterns of PAP genes in response to P deficiency and symbiosis.

Key Results

In total, 35 PAP genes were identified from soybean genomes, which can be classified into three distinct groups including six subgroups in the phylogenetic tree. The expression pattern analysis showed flowers possessed the largest number of tissue-specific GmPAP genes under normal P conditions. The expression of 23 GmPAPs was induced or enhanced by Pi starvation in different tissues. Among them, nine GmPAP genes were highly expressed in the Pi-deprived nodules, whereas only two GmPAP genes showed significantly increased expression in the arbuscular mycorrhizal roots under low-P conditions.

Conclusions

Most GmPAP genes are probably involved in P acquisition and recycling in plants. Also we provide the first evidence that some members of the GmPAP gene family are possibly involved in the response of plants to symbiosis with rhizobia or arbuscular mycorrhizal fungi under P-limited conditions.

Keywords: Soybean; Glycine max; purple acid phosphatase; expression analysis; phylogenetic analysis; phosphorus nutrition; symbiosis

Journal Article.  7002 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.