Journal Article

Pollen dispersal and gene flow within and into a population of the alpine monocarpic plant <i>Campanula thyrsoides</i>

J. F. Scheepens, Eva S. Frei, Georg F. J. Armbruster and Jürg Stöcklin

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 110, issue 7, pages 1479-1488
Published in print November 2012 | ISSN: 0305-7364
Published online June 2012 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcs131
Pollen dispersal and gene flow within and into a population of the alpine monocarpic plant Campanula thyrsoides

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Gene flow by seed and pollen largely shapes the genetic structure within and among plant populations. Seed dispersal is often strongly spatially restricted, making gene flow primarily dependent on pollen dispersal within and into populations. To understand distance-dependent pollination success, pollen dispersal and gene flow were studied within and into a population of the alpine monocarpic perennial Campanula thyrsoides.

Methods

A paternity analysis was performed on sampled seed families using microsatellites, genotyping 22 flowering adults and 331 germinated offspring to estimate gene flow, and pollen analogues were used to estimate pollen dispersal. The focal population was situated among 23 genetically differentiated populations on a subalpine mountain plateau (<10 km2) in central Switzerland.

Key Results

Paternity analysis assigned 110 offspring (33·2 %) to a specific pollen donor (i.e. ‘father’) in the focal population. Mean pollination distance was 17·4 m for these offspring, and the pollen dispersal curve based on positive LOD scores of all 331 offspring was strongly decreasing with distance. The paternal contribution from 20–35 offspring (6·0–10·5 %) originated outside the population, probably from nearby populations on the plateau. Multiple potential fathers were assigned to each of 186 offspring (56·2 %). The pollination distance to ‘mother’ plants was negatively affected by the mothers' degree of spatial isolation in the population. Variability in male mating success was not related to the degree of isolation of father plants.

Conclusions

Pollen dispersal patterns within the C. thyrsoides population are affected by spatial positioning of flowering individuals and pollen dispersal may therefore contribute to the course of evolution of populations of this species. Pollen dispersal into the population was high but apparently not strong enough to prevent the previously described substantial among-population differentiation on the plateau, which may be due to the monocarpic perenniality of this species.

Keywords: Gene flow; pollen dispersal; Campanula thyrsoides; European Alps; male mating success; monocarpic perenniality; paternity analysis; pollen analogues; pollination distance

Journal Article.  7502 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.