Journal Article

<i>Waxy</i> genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species

Carlos Guzmán, Leonor Caballero, Luis M. Martín and Juan B. Alvarez

in Annals of Botany

Published on behalf of The Annals of Botany Company

Volume 110, issue 6, pages 1161-1171
Published in print November 2012 | ISSN: 0305-7364
Published online September 2012 | e-ISSN: 1095-8290 | DOI: http://dx.doi.org/10.1093/aob/mcs201
Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species

More Like This

Show all results sharing these subjects:

  • Ecology and Conservation
  • Evolutionary Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Background and Aims

Waxy proteins are responsible for amylose synthesis in wheat seeds, being encoded by three waxy genes (Wx-A1, Wx-B1 and Wx-D1) in hexaploid wheat. In addition to their role in starch quality, waxy loci have been used to study the phylogeny of wheat. The origin of European spelt (Triticum aestivum ssp. spelta) is not clear. This study compared waxy gene sequences of a Spanish spelt collection with their homologous genes in emmer (T. turgidum ssp. dicoccum), durum (T. turgidum ssp. durum) and common wheat (T. aestivum ssp. aestivum), together with other Asian and European spelt that could be used to determine the origin of European spelt.

Methods

waxy genes were amplified and sequenced. Geneious Pro software, DNAsp and MEGA5 were used for sequence, nucleotide diversity and phylogenetic analysis, respectively.

Key Results

Three, four and three new alleles were described for the Wx-A1, Wx-B1 and Wx-D1 loci, respectively. Spelt accessions were classified into two groups based on the variation in Wx-B1, which suggests that there were two different origins for the emmer wheat that has been found to be part of the spelt genetic make-up. One of these groups was only detected in Iberian material. No differences were found between the rest of the European spelt and the Asiatic spelt, which suggested that the Iberian material had a different origin from the other spelt sources.

Conclusions

The results suggested that the waxy gene variability present in wheat is undervalued. The evaluation of this variability has permitted the detection of ten new waxy alleles that could affect starch quality and thus could be used in modern wheat breeding. In addition, two different classes of Wx-B1 were detected that could be used for evaluating the phylogenetic relationships and the origins of different types of wheat.

Keywords: Wheat; Triticum aestivum ssp. spelta; molecular characterization; phylogeny; spelt origin; waxy genes

Journal Article.  6491 words.  Illustrated.

Subjects: Ecology and Conservation ; Evolutionary Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.