Journal Article

Shortest path analysis using partial correlations for classifying gene functions from gene expression data

A. Marie Fitch and M. Beatrix Jones

in Bioinformatics

Volume 25, issue 1, pages 42-47
Published in print January 2009 | ISSN: 1367-4803
Published online November 2008 | e-ISSN: 1460-2059 | DOI: http://dx.doi.org/10.1093/bioinformatics/btn574
Shortest path analysis using partial correlations for classifying gene functions from gene expression data

More Like This

Show all results sharing this subject:

  • Bioinformatics and Computational Biology

GO

Show Summary Details

Preview

Motivation: Gaussian graphical models (GGMs) are a popular tool for representing gene association structures. We propose using estimated partial correlations from these models to attach lengths to the edges of the GGM, where the length of an edge is inversely related to the partial correlation between the gene pair. Graphical lasso is used to fit the GGMs and obtain partial correlations. The shortest paths between pairs of genes are found. Where terminal genes have the same biological function intermediate genes on the path are classified as having the same function. We validate the method using genes of known function using the Rosetta Compendium of yeast (Saccharomyces Cerevisiae) gene expression profiles. We also compare our results with those obtained using a graph constructed using correlations.

Results: Using a partial correlation graph, we are able to classify approximately twice as many genes to the same level of accuracy as when using a correlation graph. More importantly when both methods are tuned to classify a similar number of genes, the partial correlation approach can increase the accuracy of the classifications.

Contact: m.fitch@massey.ac.nz

Journal Article.  4428 words.  Illustrated.

Subjects: Bioinformatics and Computational Biology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.