Journal Article

Identification of differential gene pathways with principal component analysis

Shuangge Ma and Michael R. Kosorok

in Bioinformatics

Volume 25, issue 7, pages 882-889
Published in print April 2009 | ISSN: 1367-4803
Published online February 2009 | e-ISSN: 1460-2059 | DOI: http://dx.doi.org/10.1093/bioinformatics/btp085
Identification of differential gene pathways with principal component analysis

More Like This

Show all results sharing this subject:

  • Bioinformatics and Computational Biology

GO

Show Summary Details

Preview

Motivation: Development of high-throughput technology makes it possible to measure expressions of thousands of genes simultaneously. Genes have the inherent pathway structure, where pathways are composed of multiple genes with coordinated biological functions. It is of great interest to identify differential gene pathways that are associated with the variations of phenotypes.

Results: We propose the following approach for detecting differential gene pathways. First, we construct gene pathways using databases such as KEGG or GO. Second, for each pathway, we extract a small number of representative features, which are linear combinations of gene expressions and/or their transformations. Specifically, we propose using (i) principal components (PCs) of gene expression sets, (ii) PCs of expanded gene expression sets and (iii) expanded sets of PCs of gene expressions, as the representative features. Third, we identify differential gene pathways as those with representative features significantly associated with the variations of phenotypes, particularly disease clinical outcomes, in regression models. The false discovery rate approach is used to adjust for multiple comparisons. Analysis of three gene expression datasets suggests that (i) the proposed approach can effectively identify differential gene pathways; (ii) PCs that explain only a small amount of variations of gene expressions may bear significant associations between gene pathways and phenotypes; (iii) including second-order terms of gene expressions may lead to identification of new differential gene pathways; (iv) the proposed approach is relatively insensitive to additional noises; and (v) the proposed approach can identify gene pathways missed by alternative approaches.

Contact: shuangge.ma@yale.edu

Supplementary information:Supplementary data are available at Bioinformatics online.

Journal Article.  6804 words.  Illustrated.

Subjects: Bioinformatics and Computational Biology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.