Journal Article

MIST: Maximum Information Spanning Trees for dimension reduction of biological data sets

Bracken M. King and Bruce Tidor

in Bioinformatics

Volume 25, issue 9, pages 1165-1172
Published in print May 2009 | ISSN: 1367-4803
Published online March 2009 | e-ISSN: 1460-2059 | DOI: http://dx.doi.org/10.1093/bioinformatics/btp109
MIST: Maximum Information Spanning Trees for dimension reduction of biological data sets

More Like This

Show all results sharing this subject:

  • Bioinformatics and Computational Biology

GO

Show Summary Details

Preview

Motivation: The study of complex biological relationships is aided by large and high-dimensional data sets whose analysis often involves dimension reduction to highlight representative or informative directions of variation. In principle, information theory provides a general framework for quantifying complex statistical relationships for dimension reduction. Unfortunately, direct estimation of high-dimensional information theoretic quantities, such as entropy and mutual information (MI), is often unreliable given the relatively small sample sizes available for biological problems. Here, we develop and evaluate a hierarchy of approximations for high-dimensional information theoretic statistics from associated low-order terms, which can be more reliably estimated from limited samples. Due to a relationship between this metric and the minimum spanning tree over a graph representation of the system, we refer to these approximations as MIST (Maximum Information Spanning Trees).

Results: The MIST approximations are examined in the context of synthetic networks with analytically computable entropies and using experimental gene expression data as a basis for the classification of multiple cancer types. The approximations result in significantly more accurate estimates of entropy and MI, and also correlate better with biological classification error than direct estimation and another low-order approximation, minimum-redundancy–maximum-relevance (mRMR).

Availability: Software to compute the entropy approximations described here is available as Supplementary Material.

Contact: tidor@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Journal Article.  6812 words.  Illustrated.

Subjects: Bioinformatics and Computational Biology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.