Journal Article

Many-core algorithms for statistical phylogenetics

Marc A. Suchard and Andrew Rambaut

in Bioinformatics

Volume 25, issue 11, pages 1370-1376
Published in print June 2009 | ISSN: 1367-4803
Published online April 2009 | e-ISSN: 1460-2059 | DOI: http://dx.doi.org/10.1093/bioinformatics/btp244
Many-core algorithms for statistical phylogenetics

More Like This

Show all results sharing this subject:

  • Bioinformatics and Computational Biology

GO

Show Summary Details

Preview

Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models.

Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes.

Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/).

Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk

Journal Article.  5342 words.  Illustrated.

Subjects: Bioinformatics and Computational Biology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.