Journal Article

A novel method for mining highly imbalanced high-throughput screening data in PubChem

Qingliang Li, Yanli Wang and Stephen H. Bryant

in Bioinformatics

Volume 25, issue 24, pages 3310-3316
Published in print December 2009 | ISSN: 1367-4803
Published online October 2009 | e-ISSN: 1460-2059 | DOI: http://dx.doi.org/10.1093/bioinformatics/btp589

More Like This

Show all results sharing this subject:

  • Bioinformatics and Computational Biology

GO

Show Summary Details

Preview

Motivation: The comprehensive information of small molecules and their biological activities in PubChem brings great opportunities for academic researchers. However, mining high-throughput screening (HTS) assay data remains a great challenge given the very large data volume and the highly imbalanced nature with only small number of active compounds compared to inactive compounds. Therefore, there is currently a need for better strategies to work with HTS assay data. Moreover, as luciferase-based HTS technology is frequently exploited in the assays deposited in PubChem, constructing a computational model to distinguish and filter out potential interference compounds for these assays is another motivation.

Results: We used the granular support vector machines (SVMs) repetitive under sampling method (GSVM-RU) to construct an SVM from luciferase inhibition bioassay data that the imbalance ratio of active/inactive is high (1/377). The best model recognized the active and inactive compounds at the accuracies of 86.60% and 88.89 with a total accuracy of 87.74%, by cross-validation test and blind test. These results demonstrate the robustness of the model in handling the intrinsic imbalance problem in HTS data and it can be used as a virtual screening tool to identify potential interference compounds in luciferase-based HTS experiments. Additionally, this method has also proved computationally efficient by greatly reducing the computational cost and can be easily adopted in the analysis of HTS data for other biological systems.

Availability: Data are publicly available in PubChem with AIDs of 773, 1006 and 1379.

Contact: ywang@ncbi.nlm.nih.gov; bryant@ncbi.nlm.nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

Journal Article.  5333 words.  Illustrated.

Subjects: Bioinformatics and Computational Biology

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.