Journal Article

Maximal conditional chi-square importance in random forests

Minghui Wang, Xiang Chen and Heping Zhang

in Bioinformatics

Volume 26, issue 6, pages 831-837
Published in print March 2010 | ISSN: 1367-4803
Published online February 2010 | e-ISSN: 1460-2059 | DOI: http://dx.doi.org/10.1093/bioinformatics/btq038
Maximal conditional chi-square importance in random forests

More Like This

Show all results sharing this subject:

  • Bioinformatics and Computational Biology

GO

Show Summary Details

Preview

Motivation: High-dimensional data are frequently generated in genome-wide association studies (GWAS) and other studies. It is important to identify features such as single nucleotide polymorphisms (SNPs) in GWAS that are associated with a disease. Random forests represent a very useful approach for this purpose, using a variable importance score. This importance score has several shortcomings. We propose an alternative importance measure to overcome those shortcomings.

Results: We characterized the effect of multiple SNPs under various models using our proposed importance measure in random forests, which uses maximal conditional chi-square (MCC) as a measure of association between a SNP and the trait conditional on other SNPs. Based on this importance measure, we employed a permutation test to estimate empirical P-values of SNPs. Our method was compared to a univariate test and the permutation test using the Gini and permutation importance. In simulation, the proposed method performed consistently superior to the other methods in identifying of risk SNPs. In a GWAS of age-related macular degeneration, the proposed method confirmed two significant SNPs (at the genome-wide adjusted level of 0.05). Further analysis showed that these two SNPs conformed with a heterogeneity model. Compared with the existing importance measures, the MCC importance measure is more sensitive to complex effects of risk SNPs by utilizing conditional information on different SNPs. The permutation test with the MCC importance measure provides an efficient way to identify candidate SNPs in GWAS and facilitates the understanding of the etiology between genetic variants and complex diseases.

Contact: heping.zhang@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Journal Article.  4717 words.  Illustrated.

Subjects: Bioinformatics and Computational Biology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.