Journal Article

Chromosomal mechanisms in murine radiation acute myeloid leukaemogenesis

Simon D. Bouffler, George Breckon and Roger Cox

in Carcinogenesis

Volume 17, issue 4, pages 655-659
Published in print April 1996 | ISSN: 0143-3334
Published online April 1996 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/17.4.655
Chromosomal mechanisms in murine radiation acute myeloid
                    leukaemogenesis

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Chromosome 2 abnormalities, particularly interstitial deletions, characterize murine radiation-induced acute myeloid leukaemias (AMLs). Here, G-band analyses in CBA/H mice of early (1–6 month) post 3 Gy X-irradiation events in bone marrow cells in vivo and of karyotype evolution in one unusual AML are presented. The early event analysis showed that all irradiated animals carry chromosome 2 abnormalities, that chromosome 2 abnormalities are more frequent than expected and that interstitial deletions are more common in chromosome 2 than in the remainder of the genome. On presentation AML case N122 carried a t(2;11) terminal translocation which, with passaging, evolved into a del2(C3F3). Therefore two pathways in leukaemogenesis might exist, one deletion-driven, the other terminal translocation-driven involving interstitial genes and terminal genes respectively of chromosome 2. As all irradiated individuals carried chromosome 2 abnormalities, the formation of these aberrations does not determine individual leukaemogenic sensitivity as only 20–25% of animals would be expected to develop AML. Similar lines of argument suggest that chromosome 2 abnormalities are necessary but not sufficient for radiation leukaemogenesis in CBA/H nor are they rate limiting in leukaemogenesis.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.