Journal Article

Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay.

M Venturi, R J Hambly, B Glinghammar, J J Rafter and I R Rowland

in Carcinogenesis

Volume 18, issue 12, pages 2353-2359
Published in print December 1997 | ISSN: 0143-3334
Published online December 1997 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/18.12.2353
Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay.

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Human faecal waters from 35 healthy non-smoking volunteers (23 from England and 12 from Sweden) consuming their habitual diet were screened for genotoxicity by the single-cell gel electrophoresis (comet) assay using a human colon adenocarcinoma cell line (CACO-2) as the target. Hydrogen peroxide induced DNA damage was categorized as low, intermediate or high for tail moments greater than 5, 17 and 32, respectively: 11 samples were highly genotoxic, four were intermediate, one was low and 19 showed no activity. Endonuclease III treatment significantly increased DNA damage for all except the non-genotoxic faecal waters, suggesting that faecal water genotoxicity may be due, at least in part, to oxidative damage. Faecal water cytotoxicity has previously been attributed to the bile and fatty acid content. In the comet assay no DNA damage was induced by deoxycholate or lithocholate at normal physiological concentrations, suggesting that the genotoxicity of faecal water was due to other substances. Both bile acids induced DNA damage above 300 microM, levels often found in patients with colonic polyps and there was a significant increase in genotoxicity after endonuclease III treatment indicative of oxidative DNA damage.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.