Journal Article

Minor products of reaction of DNA with alpha-acetoxytamoxifen.

M R Osborne, I R Hardcastle and D H Phillips

in Carcinogenesis

Volume 18, issue 3, pages 539-543
Published in print March 1997 | ISSN: 0143-3334
Published online March 1997 | e-ISSN: 1460-2180 | DOI:
Minor products of reaction of DNA with alpha-acetoxytamoxifen.

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


The drug tamoxifen shows evidence of genotoxicity and induces liver tumours in rats. Covalent DNA adducts have been detected in the liver of rats treated with tamoxifen and these arise, at least in part, from its metabolite alpha-hydroxytamoxifen. This probably undergoes conjugation in the liver tissue to give an ester, which alkylates DNA. We have prepared alpha-acetoxytamoxifen as a model for this reactive intermediate and studied its reaction with DNA in vitro. The products of this reaction were chromatographically identical to DNA adducts found in the liver of rats treated with tamoxifen. We have isolated three of these products as the nucleosides TG1, TG2 and TA1 and identified them by ultraviolet, mass and proton magnetic resonance spectroscopy. TG1 and TG2 were tamoxifen-deoxyguanosine adducts in which the alpha-position of tamoxifen was linked to the amino group of guanine; TG1, (E)-4-[4-[2-(dimethylamino)ethoxy]phenyl]-3,4-diphenyl-2-(9beta-de oxyribofuranosyl-6-oxopurin-2-ylamino)-3-butene; TG2, (Z) isomer of TG1. In TG2, the tamoxifen group had undergone trans-cis isomerization. The minor product TA1 was a tamoxifen-deoxyadenosine adduct, where linkage was through the amino group of adenine: (E)-4-[4-[2-(dimethylamino) ethoxy]phenyl]-3,4-diphenyl-2-(9beta-deoxyribofuranosylpurin -6-ylamino)-3-butene. These three adducts accounted for >90% of the reaction products (approximately 67% TG1, 18% TG2 and 7% TA1); trace products included other stereoisomers of these and dinucleotide adducts which resisted enzymatic digestion.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.