Journal Article

Comparative effects of clofibrate and methyl clofenapate on morphological transformation and intercellular communication of Syrian hamster embryo cells.

V Cruciani, C Rast, M J Durand, G Nguyen-Ba and P Vasseur

in Carcinogenesis

Volume 18, issue 4, pages 701-706
Published in print April 1997 | ISSN: 0143-3334
Published online April 1997 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/18.4.701
Comparative effects of clofibrate and methyl clofenapate on morphological transformation and intercellular communication of Syrian hamster embryo cells.

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

The Syrian hamster embryo (SHE) cell system was used to evaluate the ability of two hepatocarcinogenic structurally related peroxisome proliferators (PPs) to induce morphological transformation (MT) of SHE colonies and to inhibit gap junctional intercellular communication (GJIC). Clofibrate and methyl clofenapate (MCP), which was shown to be a more active PP and a more potent carcinogen in vivo than clofibrate, were compared. MCP appeared slightly more active in vitro than clofibrate in affecting MT and GJIC of SHE cells. The morphological transformation of SHE colonies was induced by 50 microM MCP, against 100 microM clofibrate. Moreover, 50 microM MCP potentiated the transforming effects of both benzo[a]pyrene and 12-O-tetradecanoylphorbol-13-acetate. The inhibition of GJIC, measured by transfer of lucifer yellow, was transient and occurred at concentrations inducing morphological transformation. MCP inhibited dye transfer at 50 microM and the inhibition lasted up to 24 h at 100 microM. Inhibition of communication lasted only 4 h with clofibrate and occurred at a higher concentration (175 microM). This study showed that both the SHE cell transformation and dye transfer assays were able to display the different activities of the two PPs, even though the difference in potency observed was smaller than in vivo. It also revealed interactions between non-genotoxic carcinogens and the ability of the SHE cell transformation assay to detect these combined effects.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.