Journal Article

Metabolic activation of aromatic amines by human pancreas.

K E Anderson, G J Hammons, F F Kadlubar, J D Potter, K R Kaderlik, K F Ilett, R F Minchin, C H Teitel, H C Chou, M V Martin, F P Guengerich, G W Barone, N P Lang and L A Peterson

in Carcinogenesis

Volume 18, issue 5, pages 1085-1092
Published in print May 1997 | ISSN: 0143-3334
Published online May 1997 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/18.5.1085
Metabolic activation of aromatic amines by human pancreas.

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Epidemiologic studies have suggested that aromatic amines (and nitroaromatic hydrocarbons) may be carcinogenic for human pancreas. Pancreatic tissues from 29 organ donors (13 smokers, 16 non-smokers) were examined for their ability to metabolize aromatic amines and other carcinogens. Microsomes showed no activity for cytochrome P450 (P450) 1A2-dependent N-oxidation of 4-aminobiphenyl (ABP) or for the following activities (and associated P450s): aminopyrine N-demethylation and ethylmorphine N-demethylation (P450 3A4); ethoxyresorufin O-deethylation (P450 1A1) and pentoxyresorufin O-dealkylation (P450 2B6); p-nitrophenol hydroxylation and N-nitrosodimethyl-amine N-demethylation (P450 2E1); lauric acid omega-hydroxylation (P450 4A1); and 4-(methylnitrosamino)-1-(3-pyridyl-1-butanol) (NNAL) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) alpha-oxidation (P450 1A2, 2A6, 2D6). Antibodies were used to examine microsomal levels of P450 1A2, 2A6, 2C8/9/18/19, 2E1, 2D6, and 3A3/4/5/7 and epoxide hydrolase. Immunoblots detected only epoxide hydrolase at low levels; P450 levels were <1% of liver. Microsomal benzidine/prostaglandin hydroperoxidation activity was low. In pancreatic cytosols and microsomes, 4-nitrobiphenyl reductase activities were present at levels comparable to human liver. The O-acetyltransferase activity (AcCoA-dependent DNA-binding of [3H]N-hydroxy-ABP) of pancreatic cytosols was high, about twothirds the levels measured in human colon. Cytosols showed high activity for N-acetylation of p-aminobenzoic acid, but not of sulfamethazine, indicating that acetyltransferase-1 (NAT1) is predominantly expressed in this tissue. Cytosolic sulfotransferase was detected at low levels. Using 32P-post-labeling enhanced by butanol extraction, putative arylamine-DNA adducts were detected in most samples. Moreover, in eight of 29 DNA samples, a major adduct was observed that was chromatographically identical to the predominant ABP-DNA adduct, N-(deoxyguanosin-8-yl)-ABP. These results are consistent with a hypothesis that aromatic amines and nitroaromatic hydrocarbons may be involved in the etiology of human pancreatic cancer.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.