Journal Article

Detoxification of optically active bay- and fjord-region polycyclic aromatic hydrocarbon dihydrodiol epoxides by human glutathione transferase P1-1 expressed in Chinese hamster V79 cells.

A Seidel, T Friedberg, B Löllmann, A Schwierzok, M Funk, H Frank, R Holler, F Oesch and H Glatt

in Carcinogenesis

Volume 19, issue 11, pages 1975-1981
Published in print November 1998 | ISSN: 0143-3334
Published online November 1998 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/19.11.1975
Detoxification of optically active bay- and fjord-region polycyclic aromatic hydrocarbon dihydrodiol epoxides by human glutathione transferase P1-1 expressed in Chinese hamster V79 cells.

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Dihydrodiol epoxides (DEs) are important carcinogenic metabolites of polycyclic aromatic hydrocarbons (PAHs). The metabolic formation of four stereoisomeric DEs (a pair of optically active diastereomers termed as syn- and anti-form) is possible. Glutathione tranferases (GSTs) have been demonstrated to catalyze the detoxification of DEs. Purified GSTs display remarkable differences in catalytic efficiencies towards bay- and fjord-region DEs along with a high degree of regio- and stereoselectivity. Here we determined to which extent heterologously expressed human GSTP1-1, a major GST isoform in lung, affects the mutagenicity of stereoisomeric bay-region DEs of benzo[a]pyrene in Chinese hamster V79 cells. To evaluate the influence of sterical crowding in the substrate on the activity of GSTP-1, the study was extended to the strongly mutagenic fjord-region (-)-anti-DEs of benzo[c]phenanthrene and dibenzo[a,l]pyrene. GSTP1-1,reduced preferentially the mutagenicity (studied at the hprt locus) of (+)-anti and (+)-syn-DEs of benzo[a]pyrene (by 66 and 67%) as compared with the corresponding (-)-anti- and (-)-syn-enantiomers (by 15 and 13%). These results are in line with previous studies on the enantioselectivity of purified GSTP1-1 towards the DE isomers of benzo[a]pyrene and benzo[c]phenanthrene showing that enantiomers with (R)-configuration at the benzylic oxiranyl carbon are better substrates than those with (S)-configuration. Interestingly, the (-)-anti-DEs of benzo[c]phenanthrene and dibenzo[a,l]pyrene were efficiently detoxified by GSTP-1-1 in the constructed cell line (reduction of mutagenicity by 66 and 64%). This study demonstrates that differences in the caalytic activity seen for purified GST towards individual mutagens do not necessarily reflect the detoxification of DEs by the same enzyme in a living cell and provides further evidence that specific human GSTs play a role in the detoxification of DEs of PAHs.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.