Journal Article

Etheno adducts in spleen DNA of SJL mice stimulated to overproduce nitric oxide.

J Nair, A Gal, S Tamir, S R Tannenbaum, G N Wogan and H Bartsch

in Carcinogenesis

Volume 19, issue 12, pages 2081-2084
Published in print December 1998 | ISSN: 0143-3334
Published online December 1998 | e-ISSN: 1460-2180 | DOI:
Etheno adducts in spleen DNA of SJL mice stimulated to overproduce nitric oxide.

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


In order to investigate specific DNA damage caused by nitric oxide (NO) induced lipid peroxidation, levels of promutagenic etheno adducts 1,N6-ethenodeoxyadenosine (epsilondA) and 3,N4-ethenodeoxycytidine (epsilondC) were measured in spleen DNA of SJL mice induced to produce high levels of NO by injection of RcsX (pre-B-cell lymphoma) cells. epsilondA and epsilondC levels were quantified by an ultrasensitive immunoaffinity-32P-post-labeling method. Spleen DNA of control mice (n = 5) had background levels of 9.2+/-5.4 epsilondA adducts per 10(9) dA and 13.1+/-5.7 epsilondC adducts per 10(9) dC. In RcsX cell-injected mice (n = 7), levels of these adducts were elevated approximately 6-fold, i.e. 53.9+/-39.4 epsilondA per 10(9) dA and 83.5+/-57.8 epsilondC per 10(9) dC (P < 0.05). Mice injected with RcsX cells and also treated with NG-methyl-L-arginine (NMA), an inhibitor of inducible nitric oxide synthase (n = 6), had significantly reduced levels (P < 0.05) of both epsilondA and epsilondC (13.5+/-5.7 epsilondA per 10(9) dA and 28.2+/-15.7 epsilondC per 10(9) dC). These findings constitute the first available evidence of formation of etheno adducts associated with NO overproduction in vivo. The adducts were presumably formed from lipid peroxidation products such as trans-4-hydroxy-2-nonenal (HNE), generated via oxidation of lipids by peroxynitrite. The results suggest that etheno-DNA adducts, among other types of damage, may contribute to the etiology of cancers associated with chronic infection/inflammation in which NO is overproduced.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.