Journal Article

Inhibition of cigarette smoke-related lipophilic DNA adducts in rat tissues by dietary oltipraz.

J M Arif, C G Gairola, H P Glauert, G J Kelloff, R A Lubet and R C Gupta

in Carcinogenesis

Volume 19, issue 8, pages 1515-1517
Published in print August 1998 | ISSN: 0143-3334
Published online August 1998 | e-ISSN: 1460-2180 | DOI:
Inhibition of cigarette smoke-related lipophilic DNA adducts in rat tissues by dietary oltipraz.

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


The present study investigated the effects of dietary oltipraz on cigarette smoke-related lipophilic DNA adduct formation. Female Sprague-Dawley rats were exposed daily to sidestream cigarette smoke in a whole-body exposure chamber 6 h/day for 4 consecutive weeks. One group of rats was maintained on control diet while another group received the same diet supplemented with either a low (167 p.p.m.) or high (500 p.p.m.) dose of oltipraz, starting 1 week prior to initiation of smoke exposure until the end of the experiment. Analysis of lipophilic DNA adducts by the nuclease P1-mediated 32P-post-labeling showed up to five smoke-related adducts. Adduct no. 5 predominated in both the lung and the heart while adduct nos 3 and 2 predominated in the trachea and bladder, respectively. Quantitative analysis revealed that the total adduct level was the highest in lungs (270+/-68 adducts/10(10) nucleotides), followed by trachea (196+/-48 adducts/10(10) nucleotides), heart (141+/-22 adducts/10(10) nucleotides) and bladder (85+/-16 adducts/10(10) nucleotides). High dose oltipraz treatment reduced the adduct levels in lungs and bladder by >60%, while the reduction in lungs in the low-dose group was approximately 35%. In trachea, the effect of low and high dietary oltipraz on smoke DNA adduction was equivocal, while smoke-related DNA adducts in the heart were minimally inhibited by high-dose oltipraz. In a repeat experiment that employed a 3-fold lower dose of cigarette smoke, oltipraz (500 p.p.m.) was found to inhibit the formation of DNA adducts in rat lungs and trachea by 80 and 65%, respectively. These data clearly demonstrate a high efficacy of oltipraz in inhibiting the formation of cigarette smoke-induced DNA adducts in the target tissues.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.