Journal Article

Rearrangements in minisatellite sequences induced by aflatoxin B1 in a metabolically competent strain of Saccharomyces cerevisiae.

C Kaplanski, C P Wild and C Sengstag

in Carcinogenesis

Volume 19, issue 9, pages 1673-1678
Published in print January 1998 | ISSN: 0143-3334
Published online January 1998 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/19.9.1673
Rearrangements in minisatellite sequences induced by aflatoxin B1 in a metabolically competent strain of Saccharomyces cerevisiae.

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

The role of aflatoxin B1 (AFB1) in the induction of rearrangements affecting minisatellite sequences was studied in an in vitro yeast model. The Saccharomyces cerevisiae strain used expresses human cytochrome P450 1A2 and NADPH-cytochrome P450 oxidoreductase and has previously been used to study genetic recombination events induced by AFB1. DNA multilocus fingerprinting was performed using probe M13 core hybridizing to a set of hypervariable minisatellite sequences in S. cerevisiae. Frequent spontaneous genomic alterations that affect the minisatellite fingerprint pattern were observed. Control cultures showed 15.8% rearrangements in minisatellites, and this frequency increased to 40.0% in cultures exposed to AFB1 (80 microg/ml). A total of approximately 29 minisatellite loci were visualized for each culture. Given the number of cultures examined (40 AFB1-treated and 38 controls) the rearrangement frequency per detectable minisatellite was 2.59% in the AFB1-treated group and 0.73% in the control group, which represents a statistically significant (P = 0.001) difference. Thus, our data strongly suggest that AFB1 can promote the genetic events responsible for minisatellite rearrangements in the yeast genome. Such genetic rearrangements may be important events during the etiology of liver carcinogenesis in people chronically exposed to dietary aflatoxins.

Journal Article.  0 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.