Journal Article

Loss of heterozygosity frequency at the <i>Trp53</i> locus in <i>p53</i>-deficient (+/–) mouse tumors is carcinogen-and tissue-dependent

John E. French, Gregory D. Lacks, Carol Trempus, June K. Dunnick, Julie Foley, Joel Mahler, Raymond R. Tice and Raymond W. Tennant

in Carcinogenesis

Volume 22, issue 1, pages 99-106
Published in print January 2001 | ISSN: 0143-3334
Published online January 2001 | e-ISSN: 1460-2180 | DOI:
Loss of heterozygosity frequency at the Trp53 locus in p53-deficient (+/–) mouse tumors is carcinogen-and tissue-dependent

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


Mutagenic carcinogens rapidly induced tumors in the p53 haploinsufficient mouse. Heterozygous p53-deficient (+/–) mice were exposed to different mutagenic carcinogens to determine whether p53 loss of heterozygosity (LOH) was carcinogen-and tissue-dependent. For 26 weeks, C57BL/6 (N5) p53-deficient (+/–) male or female mice were exposed to p-cresidine, benzene or phenolphthalein. Tumors were examined first for loss of the wild-type p53 allele. p-cresidine induced p53 LOH in three of 13 bladder tumors, whereas hepatocellular tumors showed p53 LOH in carcinomas (2/2), but not in adenomas (0/3). Benzene induced p53 LOH in 13 of 16 tumors examined. Finally, phenolphthalein induced p53 LOH in all tumors analyzed (21/21). Analysis of the p-cresidine-induced bladder tumors by cold single-strand conformation polymorphism (SSCP) analysis of exon 4–9 amplicons failed to demonstrate polymorphisms associated with mutations in tumors that retained the p53 wild-type allele. p-cresidine induced a dose-related increase in lacI mutations in bladder DNA. In summary, these data demonstrate that loss of the wild-type allele occurred frequently in thymic lymphomas and sarcomas, but less frequently in carcinomas of the urinary bladder. In the bladder carcinomas other mechanisms may be operational. These might include (i) other mechanisms of p53 inactivation, (ii) inactivating mutations occurring outside exons 4–9 or (iii) p53 haploinsufficiency creating a condition that favors other critical genetic events which drive bladder carcinogenesis, as evidenced by the significant decrease in tumor latency. Understanding the mechanisms of p53 LOH and chemical carcinogenesis in this genetically altered model could lead to better models for prospective identification and understanding of potential human carcinogens and the role of the p53 tumor suppressor gene in different pathways of chemical carcinogenesis.

Keywords: HCA, hepatocellular adenoma; HCC, hepatocellular carcinoma; LOH, loss of heterozygosity; SCC, squamous cell carcinoma; SSCP, single-strand conformation polymorphism; TCC, transitional cell carcinoma.

Journal Article.  6400 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.