Journal Article

Nutritional modulation of DNA repair in a human intervention study

Andrew R. Collins, Vikki Harrington, Janice Drew and Rachel Melvin

in Carcinogenesis

Volume 24, issue 3, pages 511-515
Published in print March 2003 | ISSN: 0143-3334
Published online March 2003 | e-ISSN: 1460-2180 | DOI:
Nutritional modulation of DNA repair in a human intervention study

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


DNA oxidation is a potential cause of cancer in humans. It is well-known that fruits and vegetables protect against cancer, and this may be in part because they contain antioxidants, which decrease the level of oxidation of DNA. However, there are other possible mechanisms, such as an enhancement of cellular repair of this damage. A randomized cross-over study was carried out on healthy human subjects, who were given kiwifruit as a supplement to their normal diet, for 3-week periods at different ‘doses’, with 2-week washout periods between doses. Endogenous oxidation of bases in lymphocyte DNA, and the resistance of the DNA to oxidation ex vivo, were assessed using single cell gel electrophoresis (the ‘comet assay’). The capacity to repair DNA base oxidation was measured with an in vitro test, and levels of expression of repair-related genes OGG1 and APE1 were assessed by semi-quantitative RT–PCR. Concentrations of dietary antioxidants were measured in plasma. The antioxidant status of plasma and of lymphocytes was increased by consumption of kiwifruit. Levels of endogenous oxidation of pyrimidines and purines in DNA were markedly decreased, and DNA repair measured on a substrate containing 8-oxo-7,8-dihydroguanine was substantially increased (without change in levels of OGG1 or APE1 mRNA). The magnitude of these effects was generally not related to the number of kiwifruits consumed per day. Kiwifruit provides a dual protection against oxidative DNA damage, enhancing antioxidant levels and stimulating DNA repair. It is probable that together these effects would decrease the risk of mutagenic changes leading to cancer.

Keywords: AP, apurinic/apyrimidinic; APE, AP endonuclease; FPG, formamidopyrimidine DNA glycosylase; OGG1, 8-oxoGua DNA glycosylase 1; PBS, phosphate-buffered saline; 8-oxoGua, 8-oxo-7,8-dihydroguanine

Journal Article.  3919 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.