Journal Article

The effect of potent iron chelators on the regulation of p53: examination of the expression, localization and DNA-binding activity of p53 and the transactivation of <i>WAF1</i>

S.X. Liang and D.R. Richardson

in Carcinogenesis

Volume 24, issue 10, pages 1601-1614
Published in print October 2003 | ISSN: 0143-3334
Published online October 2003 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgg116
The effect of potent iron chelators on the regulation of p53: examination of the expression, localization and DNA-binding activity of p53 and the transactivation of WAF1

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Iron (Fe) chelators induce a G1/S arrest and several of these are undergoing clinical trials as anticancer agents. Despite this, little is known concerning the precise function of Fe in cell cycle progression and the role of p53 in this process. The aim of this study was to assess the effect of Fe chelators on p53 and the mechanism involved in the chelator-mediated increase in mRNA levels of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1. Cells were incubated with the potent Fe chelator 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) and the results compared with those from cells treated with actinomycin D (Act D), which induces p53. Following incubation with 311, a 3- to 5-fold increase in nuclear p53 protein was observed in cells with wild-type p53. In addition, 311 increased p53 DNA-binding activity 2-fold, while Act D increased it 3- to 5-fold in cells with native p53. To determine the role of p53 in WAF1 transcription, a reporter construct was used consisting of a WAF1 promoter containing the p53-binding site. In cells with wild-type p53, chelators had no effect on luciferase activity, while the positive control, Act D, caused a significant increase. Hence, despite increased p53 protein expression and p53 DNA-binding activity following chelation, these latter results suggested it had no role in up-regulating WAF1 mRNA. Our experiments demonstrated: (i) that the elevated WAF1 mRNA expression after Fe chelation was due to increased transcription and also to a post-transcriptional mechanism that was sensitive to cycloheximide; and (ii) that Fe-chelation increased WAF1 expression through a p53-independent pathway.

Keywords: Act D, actinomycin D; BSA, bovine serum albumin; BSS, Hank's balanced salt solution; cdks, cyclin-dependent kinases; CHX, cycloheximide; DFO, desferrioxamine; EMSA, electrophoretic mobility shift assays; FCS, fetal calf serum; FITC, fluorescein isothiocyanate; HIF-1α, hypoxia-inducible factor-1α; MEM, Eagle's modified minimum essential medium; PBS, phosphate-buffered saline; PIH, pyridoxal isonicotinoyl hydrazone; TBS, Tris-buffered saline; TES, N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid; 1,10-P, 1,10-phenanthroline; 311, 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone

Journal Article.  10355 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.