Journal Article

Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion

Jun Zou, Vladislav V. Glinsky, Linda A. Landon, Leslie Matthews and Susan L. Deutscher

in Carcinogenesis

Volume 26, issue 2, pages 309-318
Published in print February 2005 | ISSN: 0143-3334
Published online February 2005 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgh329
Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Intravascular cancer cell adhesion plays a significant role in the metastatic process. Studies indicate that galectin-3, a member of the galectin family of soluble animal lectins, is involved in carbohydrate-mediated metastatic cell heterotypic (between carcinoma cells and endothelium) and homotypic (between carcinoma cells) adhesion via interactions with the tumor-specific Thomsen–Friedenreich glycoantigen (TFAg). We hypothesized that blocking the galectin-3 carbohydrate recognition domain with synthetic peptides would significantly reduce metastasis-associated carcinoma cell adhesion. To test this hypothesis, we identified peptide antagonists of the galectin-3 carbohydrate recognition domain using combinatorial bacteriophage display technology. The peptides bound with high affinity to purified recombinant galectin-3 protein (Kd ≈ 17–80 nM) and to cell surface galectin-3. Experiments with a series of recombinant serially truncated galectin-3 mutants indicated that the peptides bound the carbohydrate recognition domain of galectin-3. Furthermore, the peptides did not bind the carbohydrate recognition domain of other galectins and plant lectins. Synthetic galectin-3 carbohydrate recognition domain-specific peptides blocked the interaction between galectin-3 and TFAg and significantly inhibited rolling and stable heterotypic adhesion of human MDA-MB-435 breast carcinoma cells to endothelial cells under flow conditions, as well as homotypic tumor cell aggregation. These results demonstrate that carbohydrate-mediated, metastasis-associated tumor cell adhesion could be inhibited efficiently with short synthetic peptides which do not mimic naturally occurring glycoepitopes yet bind to the galectin-3 carbohydrate recognition domain with high affinity and specificity.

Keywords: ASF, asialofetuin; TFAg, Thomsen–Friedenreich glycoantigen

Journal Article.  8450 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.