Journal Article

Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an <i>in vitro</i> model

Joanne M. Stempak, Kyoung-Jin Sohn, En-Pei Chiang, Barry Shane and Young-In Kim

in Carcinogenesis

Volume 26, issue 5, pages 981-990
Published in print May 2005 | ISSN: 0143-3334
Published online February 2005 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgi037
Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Folate is an essential co-factor in the remethylation of homocysteine to methionine, thereby ensuring the supply of S-adenosylmethionine, the methyl group donor for most biological methylations, including that of DNA. Aberrant patterns and dysregulation of DNA methylation are consistent events in carcinogenesis and hence, DNA methylation is considered to be mechanistically related to the development of cancer. Folate deficiency appears to increase the risk of several malignancies, and aberrant DNA methylation has been considered to be a leading mechanism by which folate deficiency enhances carcinogenesis. Although diets deficient in methyl group donors (choline, folate, methionine and vitamin B12) have been consistently observed to induce DNA hypomethylation, the effect of an isolated folate deficiency on DNA methylation remains highly controversial and unresolved. Whether or not isolated folate deficiency can modulate DNA methylation is an important issue because it would establish a mechanistic link between folate deficiency and cancer. We examined the effects of isolated folate deficiency on methionine cycle intermediates, genomic and site-specific DNA methylation and DNA methyltransferase in an in vitro model of folate deficiency, using untransformed NIH/3T3 and CHO-K1 cells, and human HCT116 and Caco-2 colon cancer cells. Our data demonstrate that the effect of folate deficiency on the methionine cycle pathway and DNA methylation in these cells is highly complex and appears to depend on the cell type and stage of transformation, and may be gene and site-specific. The direction of changes of methionine cycle intermediates in response to folate deficiency is not uniformly consistent with the known biochemical effect of folate on the methionine cycle pathway. Moreover, the effect of folate deficiency on DNA methylation appears to be mediated by both methionine cycle intermediate-dependent and independent pathways.

Keywords: CpG, cytosine-guanine dinucleotide sequences; DNMT, DNA methyltransferase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine

Journal Article.  8488 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.