Journal Article

Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, β-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—results from a dietary intake and micronucleus index survey in South Australia

Michael Fenech, Peter Baghurst, Wayne Luderer, Julie Turner, Sally Record, Marcello Ceppi and Stefano Bonassi

in Carcinogenesis

Volume 26, issue 5, pages 991-999
Published in print May 2005 | ISSN: 0143-3334
Published online February 2005 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgi042
Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, β-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—results from a dietary intake and micronucleus index survey in South Australia

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

The aim of this study was to determine the association between dietary intake, determined using a food frequency questionnaire, and genome damage in lymphocytes measured using the micronucleus (MN) assay. The study, performed on 190 healthy individuals (mean age 47.8 years, 46% males), also examined whether a supplementation with β-carotene, vitamins C and E along with zinc (ACEZn), in a randomized trial for 6 months, improves genome stability. Multivariate analysis of baseline data showed that (1) the highest tertile of intake of vitamin E, retinol, folic acid, nicotinic acid (preformed) and calcium is associated with significant reductions in MN frequency, i.e. −28, −31, −33, −46 and −49%, respectively (P < 0.005) relative to the lowest tertile of intake and (2) the highest tertile of intake of riboflavin, pantothenic acid and biotin was associated with significant increases in MN frequency, i.e. +36% (P = 0.054), +51% (P = 0.021), and +65% (P = 0.001), respectively, relative to the lowest tertile of intake. Mid-tertile β-carotene intake was associated with an 18% reduction in MN frequency (P = 0.038); however, the highest tertile of intake (>6400 µg/day) resulted in an 18% increment in MN frequency. Supplementation with ACEZn significantly reduced the MN index by 13% (P = 0.038). The study also showed interactive additive effects such as the protective effect of increased calcium intake (−46%) and the exacerbating effect of riboflavin (+42%) on increased genome damage caused by low folate intake. The results from this study illustrate the strong impact of a wide variety of micronutrients and their interactions on genome health, depending on the level of intake.

Keywords: CBMN, cytokinesis-block micronucleus; FFQ, food frequency questionnaire; MN, micronucleus; MTHFR, methylene tetrahydrofolate reductase; PARP, polyADPribose polymerase

Journal Article.  7099 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.