Journal Article

Reversion of tumor phenotype in surface transplants of skin SCC cells by scaffold-induced stroma modulation

Michael J. Willhauck, Nicolae Mirancea, Silvia Vosseler, Alessandra Pavesio, Petra Boukamp, Margareta M. Mueller, Norbert E. Fusenig and Hans-Jürgen Stark

in Carcinogenesis

Volume 28, issue 3, pages 595-610
Published in print October 2006 | ISSN: 0143-3334
Published online March 2007 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgl188
Reversion of tumor phenotype in surface transplants of skin SCC cells by scaffold-induced stroma modulation

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Interactions between cancer cells and the tissue microenvironment play an essential role in controlling tumor development and progression. Here, we report that stromal modulation induced by a biodegradable meshwork (Hyalograft 3D) inhibited tumor vascularization and invasion of the locally invasive low-grade malignant human HaCaT-ras II-4 keratinocytes in a surface xenotransplantation assay. The scaffold caused formation of an active granulation tissue that shifted to a fibrotic-type connective tissue with accumulation of myofibroblasts and collagen bundles. Most importantly, in transplants with scaffolds, the epithelial-stromal border was normalized developing an ultrastructurally complete basement membrane (BM) including hemidesmosomes. The observed reversion of the tumor phenotype was not due to decreased tumor cell proliferation but correlated with (i) normalization of epidermal differentiation, (ii) condensation of extracellular matrix (ECM) and (iii) reduction of peritumoral protease activity Furthermore, inhibited invasion was paralleled by eliminated tumor vascularization. This was substantiated by a diminished endothelial VEGF-receptor (VEGFR) expression and, in turn, by a concomitant increase in the ECM components thrombospondin-1 (TSP-1) and endostatin, known to impair angiogenesis. Even in transplants of the metastatic high-grade malignant HaCaT-ras A-5RT3 keratinocytes the anti-invasive effect of the scaffold-modulated stroma prevailed. Tumor vascularization and invasion was reduced and the epithelial tissue partially normalized including formation of stretches of BM. This clearly demonstrates that the scaffold-modulated connective tissue not only blocks tumor invasion but reverts the tumor phenotype. These novel findings underline the controlling function of tumor stroma and open new strategies of cancer therapy by targeting tumor stroma elements.

Journal Article.  10164 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.