Journal Article

Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells

Jing Fang, Qiong Zhou, Xiang-lin Shi and Bing-hua Jiang

in Carcinogenesis

Volume 28, issue 3, pages 713-723
Published in print October 2006 | ISSN: 0143-3334
Published online March 2007 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgl189
Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Insulin-like growth factor 1 receptor (IGF-1R) activation is required for prostate cell proliferation. Prostate cancer is one of the most commonly diagnosed malignant tumors in Western countries. Overexpression of IGF-1R in prostate cancer is associated with tumor growth. These suggest that IGF-1R inhibitory agents may be of preventive and/or therapeutic value. With evidence accumulating for a chemopreventive role of flavonoids, the effects of luteolin, a bioactive flavonoid, on IGF-1R signaling in prostate cancer cells were examined. Luteolin inhibited insulin-like growth factor 1 (IGF-1) induced activation of IGF-1R and AKT in prostate cancer PC-3 and DU145 cells. Inhibition of AKT by luteolin resulted in decreased phosphorylation of its downstream targets, including p70S6K1, GSK-3β and FKHR/FKHRL1. Luteolin also inhibited the IGF-1-induced activation of EGFR and MAPK/ERK signaling. Luteolin inhibited expression of cyclin D1 and increased expression of p21. As a result, luteolin suppressed proliferation and induced apoptosis of prostate cancer cells. Knockdown of IGF-1R by siRNA led to inhibition of proliferation of prostate cancer cells. Results of in vivo tumor growth assay indicated that luteolin inhibited PC-3 tumor growth. Immunoblotting of the extracts of tumor tissues showed that luteolin inhibited IGF-1R/AKT signaling. Our results provide a new insight into the mechanisms that luteolin is against cancer cells.

Journal Article.  6545 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.