Journal Article

DNA repair gene polymorphisms and genetic predisposition to cutaneous melanoma

Joanne E. Povey, Fatemeh Darakhshan, Karen Robertson, Yvonne Bisset, Magda Mekky, Jonathan Rees, Val Doherty, Gina Kavanagh, Niall Anderson, Harry Campbell, Rona M. MacKie and David W. Melton

in Carcinogenesis

Volume 28, issue 5, pages 1087-1093
Published in print May 2007 | ISSN: 0143-3334
Published online January 2007 | e-ISSN: 1460-2180 | DOI:
DNA repair gene polymorphisms and genetic predisposition to cutaneous melanoma

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


The incidence of cutaneous melanoma is rising rapidly in a number of countries. The key environmental risk factor is exposure to the ultraviolet (UV) component in sunlight. The nucleotide excision repair (NER) pathway deals with the main forms of UV-induced DNA damage. We have investigated the hypothesis that polymorphisms in NER genes constitute genetic susceptibility factors for melanoma. However, not all melanomas arise on sun-exposed sites and so we investigated the hypothesis that genes involved in other pathways for the repair of oxidative DNA damage may also be involved in susceptibility to melanoma. Scotland, with its high incidence of melanoma and stable homogeneous population, was ideal for this case–control study, involving 596 Scottish melanoma patients and 441 population-based controls. Significant associations were found for the NER genes ERCC1 and XPF, with the strongest associations for melanoma cases aged 50 and under [ERCC1 odds ratio (OR) 1.59, P = 0.008; XPF OR 1.69, P = 0.003]. Although an XPD haplotype was associated with melanoma, it did not contain the variant 751 Gln allele, which has been associated with melanoma in some previous studies. No associations were found for the base excision repair and DNA damage response genes investigated. An association was also found for a polymorphism in the promoter of the vitamin D receptor gene, VDR (OR 1.88, P = 0.005). The products of the two NER genes, ERCC1 and XPF, where associations with melanoma were found, act together in a rate-limiting step in the repair pathway.

Journal Article.  5630 words. 

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.